ZigZag - Deep Learning Hardware Design Space Exploration
This repository presents the novel version of our tried-and-tested hardware Architecture-Mapping Design Space Exploration (DSE) Framework for Deep Learning (DL) accelerators. ZigZag bridges the gap between algorithmic DL decisions and their acceleration cost on specialized accelerators through a fast and accurate hardware cost estimation.
|
Parser for ONNX Conv and QLinearConv nodes into LayerNode. More...
Public Member Functions | |
None | __init__ (self, int node_id, NodeProto node, dict[int, Any] nodes_outputs, list[dict[str, Any]] mapping_data, ModelProto onnx_model) |
LayerNode | run (self) |
Run the parser and return the created LayerNode object. More... | |
dict[str, Any] | get_layer_node_user_format (self, list[int] kernel_shape, list[int] strides, list[int] dilations, int group_size, list[int] padding, list[int] ia_shape, list[int] oa_shape) |
Generate the necessary dictionary items required for the LayerNode creation. More... | |
def | generate_layer_node_for_conv (self) |
![]() | |
None | __init__ (self, int node_id, NodeProto node, dict[int, Any] nodes_outputs, ModelProto onnx_model, *list[dict[str, Any]]|None mapping_data=None, Accelerator|None accelerator=None) |
def | get_input_output_weight_data_type (self) |
Return the data type of the input, output and weight tensors of this node. More... | |
def | get_weight_name (self, NodeProto node) |
Return the name of the weight input of this node depending on its operator type. More... | |
list[int] | get_node_predecessors (self) |
Compute node input sources. More... | |
def | get_operand_source_user_format (self, list[int] predecessors) |
Set input source and indicate constant operands. More... | |
def | get_weight_precision (self) |
Return the weight precision for this node. More... | |
def | get_activation_precision (self) |
Return the activation precision for this node. More... | |
def | get_intermediate_output_precision (self) |
Return the intermediate output precision for this node. More... | |
Public Attributes | |
mapping_data | |
onnx_model | |
![]() | |
node_id | |
node | |
nodes_outputs | |
onnx_model | |
mapping_data | |
accelerator | |
Additional Inherited Members | |
![]() | |
string | CUSTOM_WEIGHT_SIZE_ATTR = "weight_size" |
string | CUSTOM_ACT_SIZE_ATTR = "act_size" |
string | CUSTOM_OUTPUT_SIZE_ATTR = "output_size" |
Parser for ONNX Conv and QLinearConv nodes into LayerNode.
None __init__ | ( | self, | |
int | node_id, | ||
NodeProto | node, | ||
dict[int, Any] | nodes_outputs, | ||
list[dict[str, Any]] | mapping_data, | ||
ModelProto | onnx_model | ||
) |
def generate_layer_node_for_conv | ( | self | ) |
dict[str, Any] get_layer_node_user_format | ( | self, | |
list[int] | kernel_shape, | ||
list[int] | strides, | ||
list[int] | dilations, | ||
int | group_size, | ||
list[int] | padding, | ||
list[int] | ia_shape, | ||
list[int] | oa_shape | ||
) |
Generate the necessary dictionary items required for the LayerNode creation.
If there is no data for a given Layer Attribute, the Layer Attribute is not included in the returned dict.
LayerNode run | ( | self | ) |
Run the parser and return the created LayerNode object.
Reimplemented from ONNXOperatorParser.
mapping_data |
onnx_model |