ZigZag - Deep Learning Hardware Design Space Exploration
This repository presents the novel version of our tried-and-tested hardware Architecture-Mapping Design Space Exploration (DSE) Framework for Deep Learning (DL) accelerators. ZigZag bridges the gap between algorithmic DL decisions and their acceleration cost on specialized accelerators through a fast and accurate hardware cost estimation.
|
State of SALSA, storing an ordering, his temporal mapping and his energy value. More...
Public Member Functions | |
def | __init__ (self, Accelerator accelerator, LayerNode layer, SpatialMappingInternal spatial_mapping, list[tuple[LayerDim, UnrollFactorInt]] ordering, str opt_criterion_name, TemporalMappingType mapping_type) |
"SalsaState" | swap (self, int i, int j) |
Swap between the element at position i and j in the ordering and return the new resulting state. More... | |
Public Attributes | |
ordering | |
accelerator | |
layer | |
spatial_mapping | |
memory_hierarchy | |
opt_criterion_name | |
mapping_type | |
temporal_mapping | |
cme | |
opt_criterion | |
State of SALSA, storing an ordering, his temporal mapping and his energy value.
def __init__ | ( | self, | |
Accelerator | accelerator, | ||
LayerNode | layer, | ||
SpatialMappingInternal | spatial_mapping, | ||
list[tuple[LayerDim, UnrollFactorInt]] | ordering, | ||
str | opt_criterion_name, | ||
TemporalMappingType | mapping_type | ||
) |
"SalsaState" swap | ( | self, | |
int | i, | ||
int | j | ||
) |
Swap between the element at position i and j in the ordering and return the new resulting state.
accelerator |
cme |
layer |
mapping_type |
memory_hierarchy |
opt_criterion |
opt_criterion_name |
ordering |
spatial_mapping |
temporal_mapping |