ZigZag - Deep Learning Hardware Design Space Exploration
This repository presents the novel version of our tried-and-tested hardware Architecture-Mapping Design Space Exploration (DSE) Framework for Deep Learning (DL) accelerators. ZigZag bridges the gap between algorithmic DL decisions and their acceleration cost on specialized accelerators through a fast and accurate hardware cost estimation.
SalsaState Class Reference

State of SALSA, storing an ordering, his temporal mapping and his energy value. More...

Public Member Functions

def __init__ (self, Accelerator accelerator, LayerNode layer, SpatialMappingInternal spatial_mapping, list[tuple[LayerDim, UnrollFactorInt]] ordering, str opt_criterion_name, TemporalMappingType mapping_type)
 
"SalsaState" swap (self, int i, int j)
 Swap between the element at position i and j in the ordering and return the new resulting state. More...
 

Public Attributes

 ordering
 
 accelerator
 
 layer
 
 spatial_mapping
 
 memory_hierarchy
 
 opt_criterion_name
 
 mapping_type
 
 temporal_mapping
 
 cme
 
 opt_criterion
 

Detailed Description

State of SALSA, storing an ordering, his temporal mapping and his energy value.

Constructor & Destructor Documentation

◆ __init__()

def __init__ (   self,
Accelerator  accelerator,
LayerNode  layer,
SpatialMappingInternal  spatial_mapping,
list[tuple[LayerDim, UnrollFactorInt]]  ordering,
str  opt_criterion_name,
TemporalMappingType  mapping_type 
)

Member Function Documentation

◆ swap()

"SalsaState" swap (   self,
int  i,
int  j 
)

Swap between the element at position i and j in the ordering and return the new resulting state.

Member Data Documentation

◆ accelerator

accelerator

◆ cme

cme

◆ layer

layer

◆ mapping_type

mapping_type

◆ memory_hierarchy

memory_hierarchy

◆ opt_criterion

opt_criterion

◆ opt_criterion_name

opt_criterion_name

◆ ordering

ordering

◆ spatial_mapping

spatial_mapping

◆ temporal_mapping

temporal_mapping

The documentation for this class was generated from the following file: