ZigZag - Deep Learning Hardware Design Space Exploration
This repository presents the novel version of our tried-and-tested hardware Architecture-Mapping Design Space Exploration (DSE) Framework for Deep Learning (DL) accelerators. ZigZag bridges the gap between algorithmic DL decisions and their acceleration cost on specialized accelerators through a fast and accurate hardware cost estimation.
ServedMemDimensions Class Reference

Represents a collection of Operational Array Dimensions (served by some Memory Instance) More...

Public Member Functions

def __init__ (self, set[OADimension] data)
 
def nb_dims (self)
 
def __eq__ (self, Any other)
 
def __str__ (self)
 
def __contains__ (self, OADimension other)
 
def __iter__ (self)
 
def __len__ (self)
 

Public Attributes

 data
 

Detailed Description

Represents a collection of Operational Array Dimensions (served by some Memory Instance)

Constructor & Destructor Documentation

◆ __init__()

def __init__ (   self,
set[OADimension data 
)

Member Function Documentation

◆ __contains__()

def __contains__ (   self,
OADimension  other 
)

◆ __eq__()

def __eq__ (   self,
Any  other 
)

◆ __iter__()

def __iter__ (   self)

◆ __len__()

def __len__ (   self)

◆ __str__()

def __str__ (   self)

◆ nb_dims()

def nb_dims (   self)

Member Data Documentation

◆ data

data

The documentation for this class was generated from the following file: