ZigZag - Deep Learning Hardware Design Space Exploration
This repository presents the novel version of our tried-and-tested hardware Architecture-Mapping Design Space Exploration (DSE) Framework for Deep Learning (DL) accelerators. ZigZag bridges the gap between algorithmic DL decisions and their acceleration cost on specialized accelerators through a fast and accurate hardware cost estimation.
run_opt_stages.py File Reference

Classes

class  RemoveExtraInfoStage
 Strips extra info for subcallables to save memory. More...
 
class  CacheBeforeYieldStage
 Caches results in a list and then yields them. More...
 
class  SkipIfDumpExistsStage
 Check if the output file is already generated, skip the run if so. More...
 
class  MultiProcessingSpawnStage
 Multiprocessing support stage. More...
 
class  MultiProcessingGatherStage
 Multiprocessing support stage. More...
 

Namespaces

 zigzag.stages.run_opt_stages
 

Functions

def get_threadpool (int|None nb_threads_if_non_existent)
 
def close_threadpool ()
 
def terminate_threadpool ()
 
def raise_exception (Exception e)
 

Variables

 logger = logging.getLogger(__name__)
 
 threadpool = None