ZigZag - Deep Learning Hardware Design Space Exploration
This repository presents the novel version of our tried-and-tested hardware Architecture-Mapping Design Space Exploration (DSE) Framework for Deep Learning (DL) accelerators. ZigZag bridges the gap between algorithmic DL decisions and their acceleration cost on specialized accelerators through a fast and accurate hardware cost estimation.
plot_cme.py File Reference

Namespaces

 zigzag.visualization.results.plot_cme
 

Functions

def shorten_onnx_layer_name (str name)
 Names generated in the ONNX format are quite long (e.g. More...
 
def get_mem_energy_single_op (CostModelEvaluation cme, LayerOperand op, int mem_level)
 
def get_energy_array (list[CostModelEvaluation] cmes, list[LayerOperand] all_ops, list[MemoryInstance] all_mems)
 Convert the given list of cmes to a numpy array with the energy per layer, memory level, operand and data direction. More...
 
def get_latency_array (list[CostModelEvaluation] cmes)
 
def bar_plot_cost_model_evaluations_breakdown (list[CostModelEvaluationABC] cmes, str save_path)
 

Variables

int SMALLEST_SIZE = 10
 
int SMALLER_SIZE = 12
 
int SMALL_SIZE = 14
 
int MEDIUM_SIZE = 16
 
int BIG_SIZE = 18
 
int BIGGER_SIZE = 20
 
 size
 
 titlesize
 
 labelsize
 
 fontsize
 
int BAR_WIDTH = 1
 
int BAR_SPACING = 0
 
int GROUP_SPACING = 1