ZigZag - Deep Learning Hardware Design Space Exploration
This repository presents the novel version of our tried-and-tested hardware Architecture-Mapping Design Space Exploration (DSE) Framework for Deep Learning (DL) accelerators. ZigZag bridges the gap between algorithmic DL decisions and their acceleration cost on specialized accelerators through a fast and accurate hardware cost estimation.
|
Namespaces | |
zigzag.mapping.mapping_assist_funcs | |
Functions | |
SpatialMappingPerMemLvl | decouple_pr_loop (SpatialMappingPerMemLvl mapping_dict, "LayerNode" layer_node) |
This function decouples the pr loops into data size (r loops) and data reuse (ir loops). More... | |
list[list[tuple[LayerDim, UnrollFactor]]] | replace_pr_loop_in_mapping (list[list[tuple[LayerDim, UnrollFactor]]] single_operand_mapping, dict[LayerDim, list[list[float]]] per_pr_data_size, dict[LayerDim, list[list[float]]] per_pr_data_reuse, PrLoop pr_operand_loop_lut, list[LayerDim] r_ir_operand_loop_lut) |
This function replaces all pr loops in a mapping of a single operand with r and ir loops. More... | |
Variables | |
TypeAlias | |