ZigZag - Deep Learning Hardware Design Space Exploration
This repository presents the novel version of our tried-and-tested hardware Architecture-Mapping Design Space Exploration (DSE) Framework for Deep Learning (DL) accelerators. ZigZag bridges the gap between algorithmic DL decisions and their acceleration cost on specialized accelerators through a fast and accurate hardware cost estimation.
|
Files | |
file | __init__.py |
file | conv_parser.py |
file | default_node_parser.py |
file | gemm_parser.py |
file | matmul_parser.py |
file | onnx_model_parser.py |
file | onnx_operator_parser.py |
file | utils.py |