ZigZag - Deep Learning Hardware Design Space Exploration
This repository presents the novel version of our tried-and-tested hardware Architecture-Mapping Design Space Exploration (DSE) Framework for Deep Learning (DL) accelerators. ZigZag bridges the gap between algorithmic DL decisions and their acceleration cost on specialized accelerators through a fast and accurate hardware cost estimation.
|
This is the complete list of members for DefaultNodeParser, including all inherited members.
__init__(self, int node_id, NodeProto node, dict[int, Any] nodes_outputs, ModelProto onnx_model, *list[dict[str, Any]]|None mapping_data=None, Accelerator|None accelerator=None) | ONNXOperatorParser | |
accelerator | ONNXOperatorParser | |
CUSTOM_ACT_SIZE_ATTR | ONNXOperatorParser | static |
CUSTOM_OUTPUT_SIZE_ATTR | ONNXOperatorParser | static |
CUSTOM_WEIGHT_SIZE_ATTR | ONNXOperatorParser | static |
generate_dummy_node(self) | DefaultNodeParser | |
get_activation_precision(self) | ONNXOperatorParser | |
get_input_output_weight_data_type(self) | ONNXOperatorParser | |
get_intermediate_output_precision(self) | ONNXOperatorParser | |
get_node_predecessors(self) | ONNXOperatorParser | |
get_operand_source_user_format(self, list[int] predecessors) | ONNXOperatorParser | |
get_weight_name(self, NodeProto node) | ONNXOperatorParser | |
get_weight_precision(self) | ONNXOperatorParser | |
mapping_data | ONNXOperatorParser | |
node | ONNXOperatorParser | |
node_id | ONNXOperatorParser | |
nodes_outputs | ONNXOperatorParser | |
onnx_model | ONNXOperatorParser | |
run(self) | DefaultNodeParser |