ZigZag - Deep Learning Hardware Design Space Exploration
This repository presents the novel version of our tried-and-tested hardware Architecture-Mapping Design Space Exploration (DSE) Framework for Deep Learning (DL) accelerators. ZigZag bridges the gap between algorithmic DL decisions and their acceleration cost on specialized accelerators through a fast and accurate hardware cost estimation.
|
Store constant objects used throughout ZigZag (instead of hardcoding them) More...
Static Public Attributes | |
LAYER_OP_I = LayerOperand("I") | |
LAYER_OP_W = LayerOperand("W") | |
OUTPUT_LAYER_OP = LayerOperand("O") | |
FINAL_OUTPUT_LAYER_OP = LayerOperand("O_final") | |
MEM_OP_1 = MemoryOperand("I1") | |
MEM_OP_2 = MemoryOperand("I2") | |
OUTPUT_MEM_OP = MemoryOperand("O") | |
FINAL_OUTPUT_MEM_OP = MemoryOperand("O_final") | |
UNKNOWN_DIM_OPERATOR = LayerDim("*") | |
TypeAlias | |
Type aliases ######. More... | |
Store constant objects used throughout ZigZag (instead of hardcoding them)
|
static |
|
static |
|
static |
|
static |
|
static |
|
static |
|
static |
|
static |
|
static |
Type aliases ######.
|
static |