ZigZag - Deep Learning Hardware Design Space Exploration
This repository presents the novel version of our tried-and-tested hardware Architecture-Mapping Design Space Exploration (DSE) Framework for Deep Learning (DL) accelerators. ZigZag bridges the gap between algorithmic DL decisions and their acceleration cost on specialized accelerators through a fast and accurate hardware cost estimation.
|
This is the complete list of members for DummyNode, including all inherited members.
__init__(self, int node_id, list[int] predecessors, str node_type, str node_name="") | DummyNode | |
zigzag::workload::layer_node_abc::LayerNodeABC.__init__(self, int node_id, str node_name) | LayerNodeABC | |
__jsonrepr__(self) | LayerNodeABC | |
__repr__(self) | LayerNodeABC | |
__str__(self) | DummyNode | |
end | DummyNode | |
get_end(self) | DummyNode | |
get_runtime(self) | DummyNode | |
get_start(self) | DummyNode | |
has_end(self) | DummyNode | |
id | LayerNodeABC | |
input_operand_source | DummyNode | |
name | LayerNodeABC | |
runtime | DummyNode | |
set_end(self, int end) | DummyNode | |
set_start(self, int start) | DummyNode | |
start | DummyNode | |
type | DummyNode |