ZigZag - Deep Learning Hardware Design Space Exploration
This repository presents the novel version of our tried-and-tested hardware Architecture-Mapping Design Space Exploration (DSE) Framework for Deep Learning (DL) accelerators. ZigZag bridges the gap between algorithmic DL decisions and their acceleration cost on specialized accelerators through a fast and accurate hardware cost estimation.
|
This is the complete list of members for LayerNodeFactory, including all inherited members.
__init__(self, dict[str, Any] node_data, list[dict[str, Any]]|None mapping_data) | LayerNodeFactory | |
create(self) | LayerNodeFactory | |
create_constant_operands(self) | LayerNodeFactory | |
create_equation(self) | LayerNodeFactory | |
create_layer_dim_relations(self) | LayerNodeFactory | |
create_layer_dim_sizes(self) | LayerNodeFactory | |
create_mapping_attr(self, LayerDimSizes layer_dim_sizes) | LayerNodeFactory | |
create_node_attr(self) | LayerNodeFactory | |
create_operand_precision(self) | LayerNodeFactory | |
create_operand_source(self) | LayerNodeFactory | |
create_padding(self) | LayerNodeFactory | |
create_pr_layer_dim_sizes(self) | LayerNodeFactory | |
mapping_data | LayerNodeFactory | |
node_data | LayerNodeFactory |