|
ZigZag - Deep Learning Hardware Design Space Exploration
This repository presents the novel version of our tried-and-tested hardware Architecture-Mapping Design Space Exploration (DSE) Framework for Deep Learning (DL) accelerators. ZigZag bridges the gap between algorithmic DL decisions and their acceleration cost on specialized accelerators through a fast and accurate hardware cost estimation.
|
This is the complete list of members for SalsaEngine, including all inherited members.
| __init__(self, *Accelerator accelerator, LayerNode layer, SpatialMappingInternal spatial_mapping, TemporalMappingType mapping_type, **Any kwargs) | SalsaEngine | |
| accelerator | SalsaEngine | |
| cme_queue | SalsaEngine | |
| get_prime_factors(self) | SalsaEngine | |
| get_temporal_loops(self) | SalsaEngine | |
| iteration_number | SalsaEngine | |
| layer | SalsaEngine | |
| lpf_limit | SalsaEngine | |
| mapping_type | SalsaEngine | |
| opt_criterion_name | SalsaEngine | |
| run(self, Queue cme_queue) | SalsaEngine | |
| run_simulated_annealing_opt(self, cme_queue) | SalsaEngine | |
| spatial_mapping | SalsaEngine | |
| start_temperature | SalsaEngine | |
| temporal_loop_dim_size | SalsaEngine | |
| temporal_mapping_lpf | SalsaEngine |