ZigZag - Deep Learning Hardware Design Space Exploration
This repository presents the novel version of our tried-and-tested hardware Architecture-Mapping Design Space Exploration (DSE) Framework for Deep Learning (DL) accelerators. ZigZag bridges the gap between algorithmic DL decisions and their acceleration cost on specialized accelerators through a fast and accurate hardware cost estimation.
|
This is the complete list of members for SalsaEngine, including all inherited members.
__init__(self, *Accelerator accelerator, LayerNode layer, SpatialMappingInternal spatial_mapping, TemporalMappingType mapping_type, **Any kwargs) | SalsaEngine | |
accelerator | SalsaEngine | |
cme_queue | SalsaEngine | |
get_prime_factors(self) | SalsaEngine | |
get_temporal_loops(self) | SalsaEngine | |
iteration_number | SalsaEngine | |
layer | SalsaEngine | |
lpf_limit | SalsaEngine | |
mapping_type | SalsaEngine | |
opt_criterion_name | SalsaEngine | |
run(self, Queue cme_queue) | SalsaEngine | |
run_simulated_annealing_opt(self, cme_queue) | SalsaEngine | |
spatial_mapping | SalsaEngine | |
start_temperature | SalsaEngine | |
temporal_loop_dim_size | SalsaEngine | |
temporal_mapping_lpf | SalsaEngine |