ZigZag - Deep Learning Hardware Design Space Exploration
This repository presents the novel version of our tried-and-tested hardware Architecture-Mapping Design Space Exploration (DSE) Framework for Deep Learning (DL) accelerators. ZigZag bridges the gap between algorithmic DL decisions and their acceleration cost on specialized accelerators through a fast and accurate hardware cost estimation.
|
This is the complete list of members for TemporalMapping, including all inherited members.
__init__(self, TemporalMappingDict temporal_mapping_dict, LayerNode layer_node, TemporalMappingType mapping_type) | TemporalMapping | |
__jsonrepr__(self) | TemporalMapping | |
__repr__(self) | TemporalMapping | |
__str__(self) | TemporalMapping | |
calc_cycle_cabl_level(self) | TemporalMapping | |
calc_top_r_and_ir_loop(self) | TemporalMapping | |
cycle_cabl_level | TemporalMapping | |
innermost_stationary_loop_merge_down(self) | TemporalMapping | |
layer_node | TemporalMapping | |
mac_level_data_stationary_cycle | TemporalMapping | |
mapping_dic_origin | TemporalMapping | |
mapping_dic_stationary | TemporalMapping | |
mem_level | TemporalMapping | |
operand_list | TemporalMapping | |
top_ir_loop_size | TemporalMapping | |
top_r_loop_size | TemporalMapping | |
total_cycle | TemporalMapping | |
type | TemporalMapping |