ZigZag - Deep Learning Hardware Design Space Exploration
This repository presents the novel version of our tried-and-tested hardware Architecture-Mapping Design Space Exploration (DSE) Framework for Deep Learning (DL) accelerators. ZigZag bridges the gap between algorithmic DL decisions and their acceleration cost on specialized accelerators through a fast and accurate hardware cost estimation.
|
This is the complete list of members for SpatialMappingConversionStage, including all inherited members.
__init__(self, list[StageCallable] list_of_callables, *Accelerator accelerator, LayerNode layer, **Any kwargs) | SpatialMappingConversionStage | |
zigzag::stages::stage::Stage.__init__(self, list["StageCallable"] list_of_callables, **Any kwargs) | Stage | |
__iter__(self) | Stage | |
accelerator | SpatialMappingConversionStage | |
calc_unrolled_loop_size_on_early_oa_dims(self, OADimension oa_dim, LayerDim loop_dim_unrolled, SpatialMapping user_spatial_mapping) | SpatialMappingConversionStage | |
check_if_oa_dim_mapping_is_first_max(self, OADimension oa_dim, LayerDim loop_dim_unrolled, SpatialMapping user_spatial_mapping) | SpatialMappingConversionStage | |
convert_user_spatial_mapping(self, SpatialMapping user_spatial_mapping) | SpatialMappingConversionStage | |
generate_limited_user_spatial_mapping(self, LayerDimSizes layer_dim_sizes, OADimension oa_dim, tuple[LayerDim, UnrollFactor] spatial_loop, SpatialMapping user_spatial_mapping, SpatialMapping limited_user_spatial_mapping, bool allow_decimal_sm_loop_size=True) | SpatialMappingConversionStage | |
generate_mapping_per_mem_lvl(self, SpatialMapping user_spatial_mapping) | SpatialMappingConversionStage | |
is_leaf(self) | Stage | |
kwargs | Stage | |
layer | SpatialMappingConversionStage | |
list_of_callables | Stage | |
memory_operand_links | SpatialMappingConversionStage | |
run(self) | SpatialMappingConversionStage | |
user_spatial_mapping | SpatialMappingConversionStage |